Comparative Life Cycle Assessment of alternating and direct current electric loads: the case study of a power supply unit

Sonia Longo^{1*}, Alberto Affranchi², Maurizio Cellura¹, Francesco Guarino¹ ¹Department of Engineering University of Palermo, Palermo, Italy ²Center of Sustainability and Ecological Transition, University of Palermo, Palermo, Italy *e-mail: sonia.longo@unipa.it

The project Lowering Ortigia's Voltage - LOV

Goal: to design, develop and examine a **"micro-grid" model** that operates in **direct current**, to obtain an efficient distribution of electricity at low voltage level.

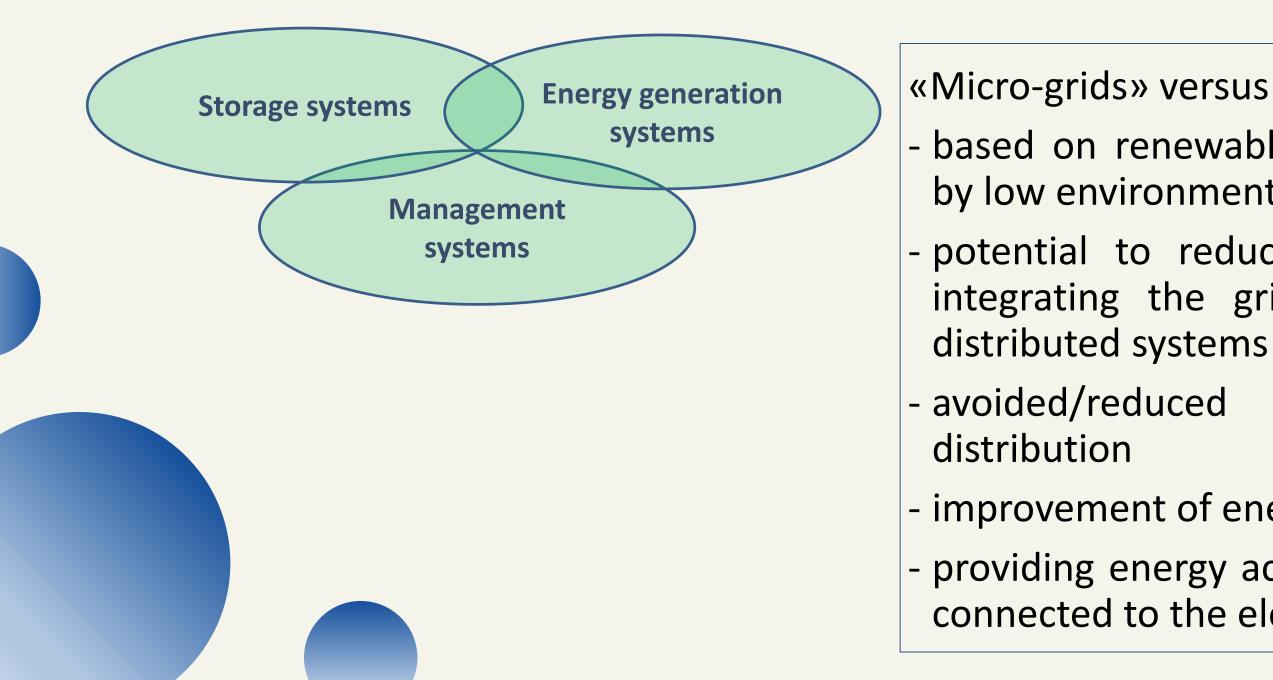
Partners: **UniPa**, Enerwave, Prysmian Group, Fornindustria, Adeo, 3 ESSE, CNR ITAE, I.E.ME.S.T.

The main role of UniPa:

to examine the energy and environmental performance of microgrid prototypes applying LCA methodology in an eco-design perspective.

LOV – Lowering Ortigia's Voltage funded by POC 2014-2020 CUP G39J18000690007

NIONE EUROPEA



REGIONE SICILIAN

Introduction

Distributed energy systems that integrate renewable energy technologies play an important role in the decarbonisation process of our economy.

- «Micro-grids» versus centralized energy systems:
- based on renewable energy sources characterized by low environmental impacts
- -potential to reduce the peak load demand by integrating the grid supplies with energy from
- avoided/reduced cost of transmission and
- improvement of energy security
- providing energy access to facilities that cannot be connected to the electricity grid.

Introduction L. AC/DC DC/D DC/D AC/DC **Direct current microgrid** Alternating current microgrid Distribution Grid DC/A DC/A Transformer **Bypass switch** AC/DC DC/D AC/DC

DC versus AC micro-grids:

- Reduction of multiple energy conversions from AC to DC and vice versa
- Improved energy efficiency and reduced losses
- Simplified configuration: less components
- Reduced costs.

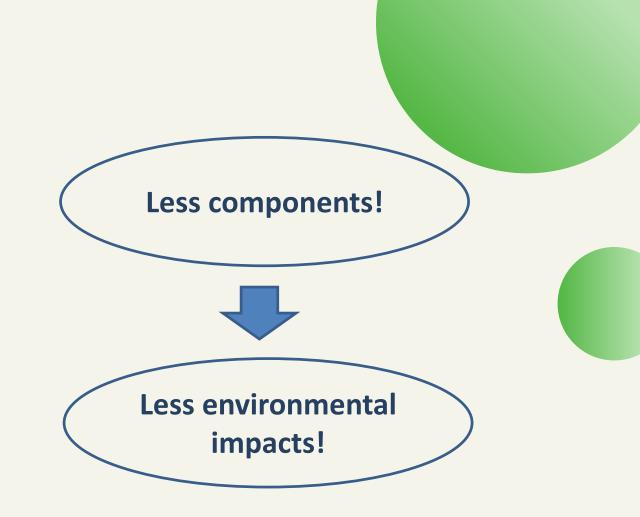
Distributed energy sources are connected to a DC bus

AC-to-DC rectifiers help to connect AC generating units

DC-to-AC inverters supply AC loads

Distributed energy sources are connected to an AC bus

Units that generate energy in DC and units for energy storage use DC-to-AC inverters to be connected to the AC bus

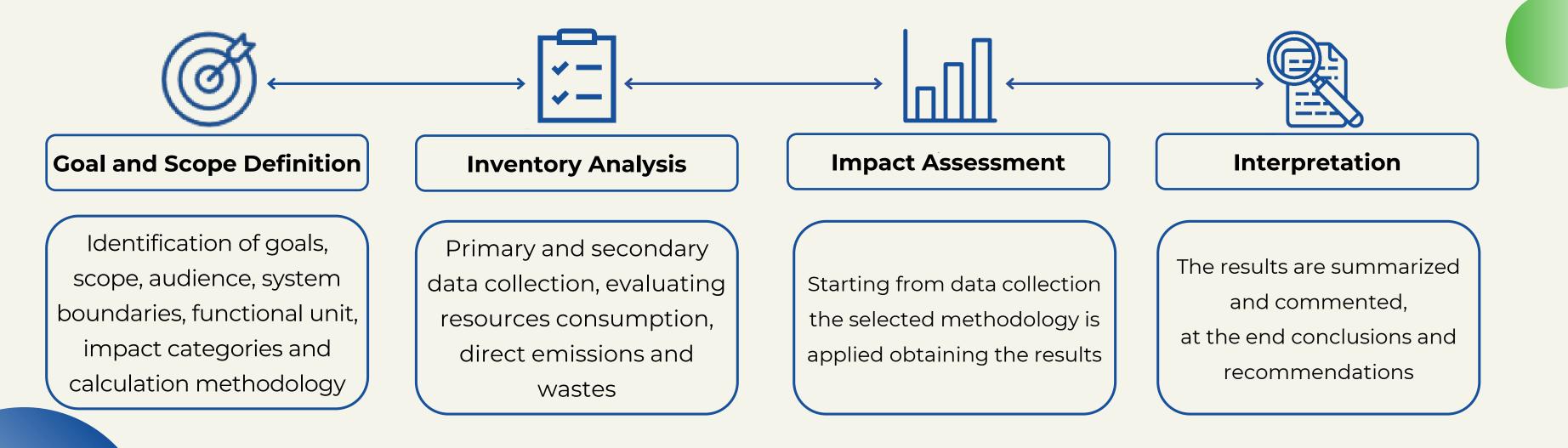

AC-to-DC rectifiers supply the energy to the DC loads

Introduction * E DC/D AC/DC AC/DC **Direct current microgrid**

Alternating current microgrid Distribution Grid DC/AC DC/A Transformer AC/DC Bypass switch DC/D AC/DC * E

Need of research:

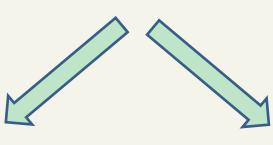
Detailed analyses focused on the life-cycle energy and environmental impacts/benefits of using electric loads that operate with DC microgrids.



<u>ل</u>ے ا

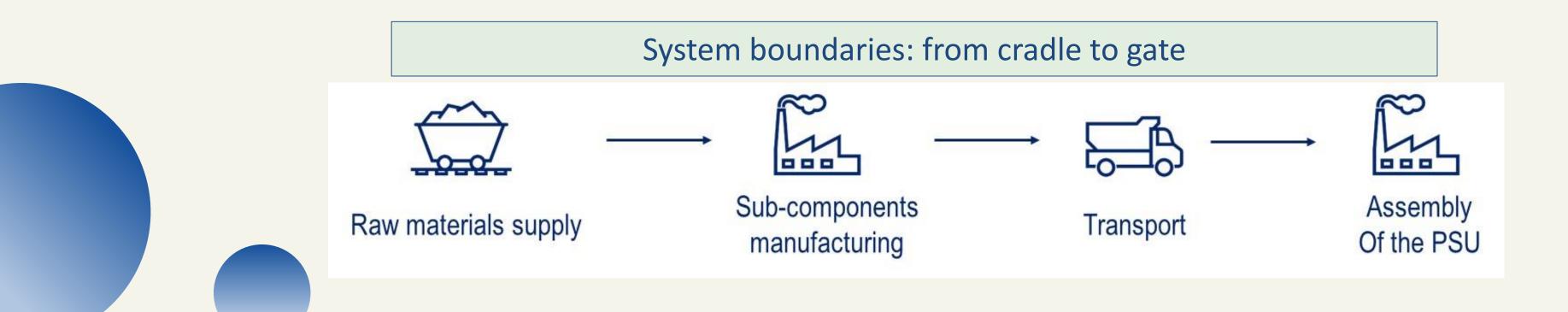
DC/D

Life Cycle Assessment


LCA is a powerful tool to evaluate the sustainability of a product by analysing the whole product life-cycle.

Goal of the study: to evaluate the life-cycle benefits of using electric loads that operate directly with DC microgrids

Case study: computer's power supply unit (PSU), a typical electronic load frequently included in the places of work and houses.


Configuration 1 – AC-PSU: PSU operating with an AC-DC conversion.

Configuration 2 – DC-PSU: PSU directly working in DC-DC.

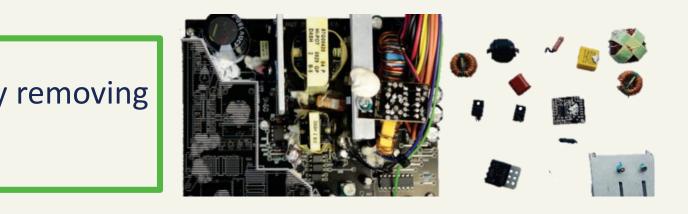
Functional unit: computer's power supply unit (PSU)

Model: DELL N° L290AM-00 Dimensions (W x L x H): 15 x 14 x 8,5 cm AC Input: 100-240 V/5.4 A Input frequency range: 50-60 Hz DC Output: 12 V Max output power: 290 W Max operative temperature: 50 °C

To apply LCA a comprehensive list of components and sub-components is needed (inventory analysis).

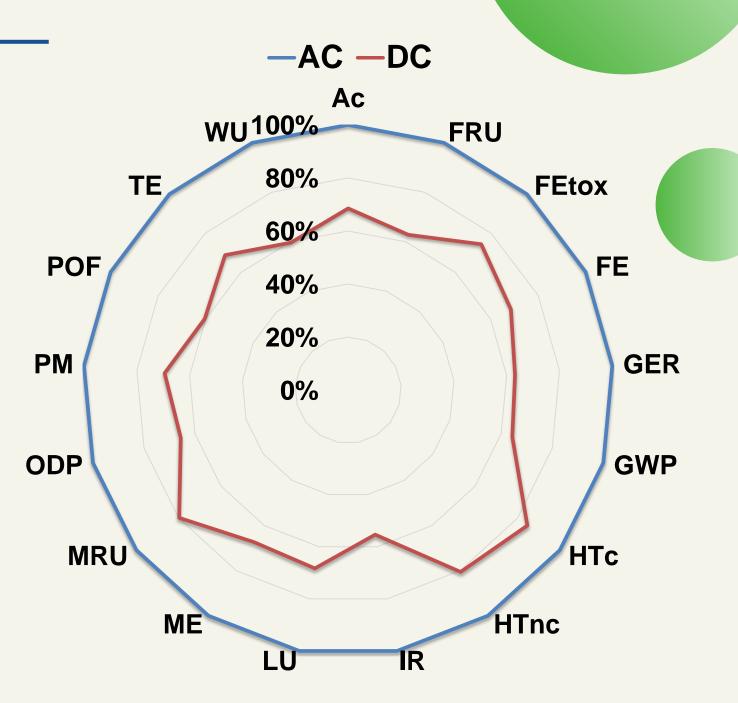
Configuration 1 – AC-PSU

Disassembly of the PSU at University of Palermo "LCA and Eco-design Lab"



Configuration 2 – DC-PSU

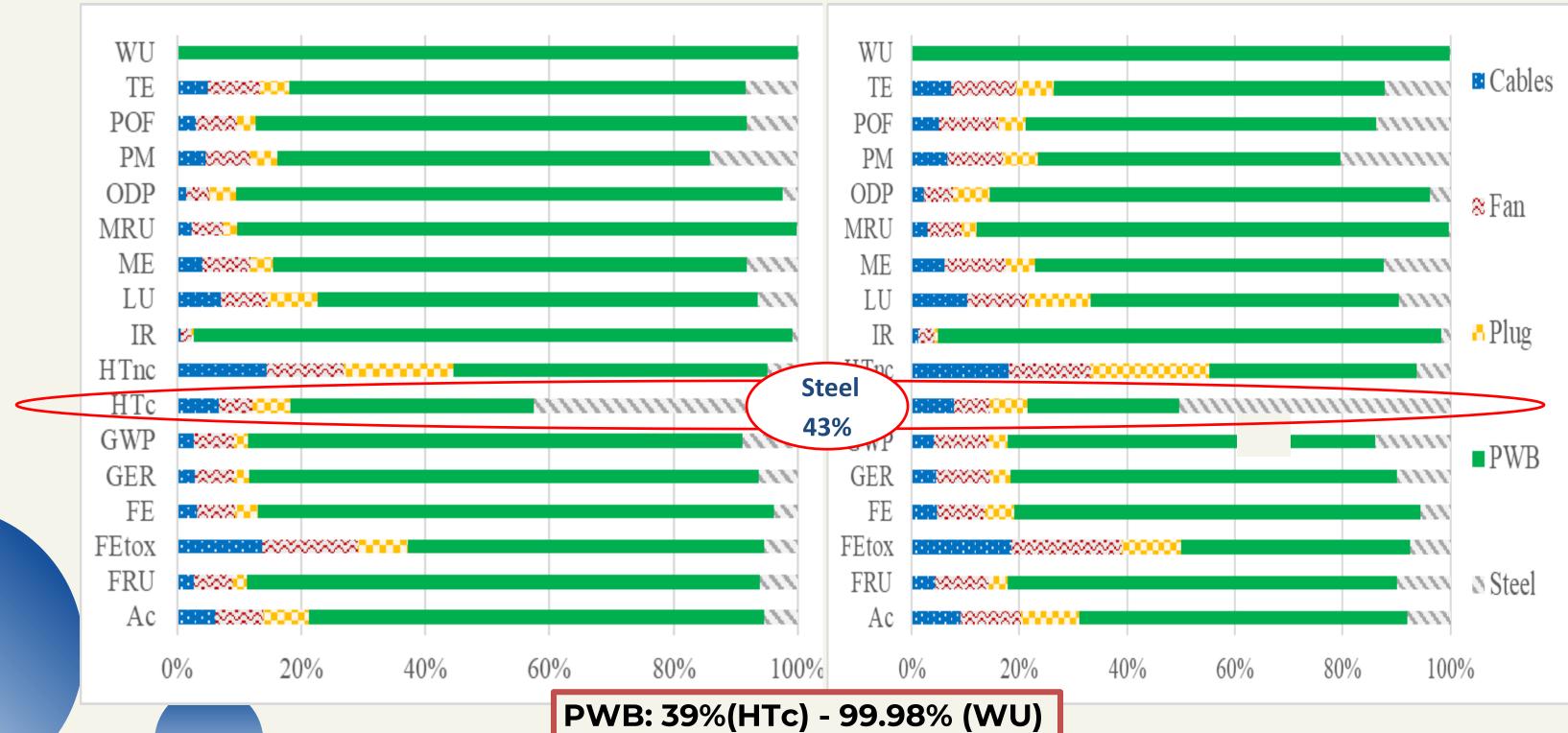
Based on Stippich et al. (2017) and Kockel et al. (2022): modeling of DC-PSU by removing extra components used for the AC-DC conversion.


To apply LCA a comprehensive list of components and sub-components is needed (inventory analysis).

	AC PSU	DC PSU	Sub-components of AC PWB	Mass (kg)
Cables and plug	4.41E-02 kg	4.41E-02 kg	Aluminium heat sinks	7.42E-02
Fan	7.37E-0 <u>2 ka</u>	7.37E-02 kg	Capacitors	5.77E-02
PWB	3.81E-01 kg	2.60E-01 kg	Diodes	4.26E-03
PWB's surface	1.72E-02 m ²	1.29E-02 m ²	Inductors	7.88E-02
Steel	5.67E-01 kg	5.67E-01 kg	Integrated circuit	4.94E-04
	S.O/L Orng	S.O/L Orkg	Resistors	2.55E-03
			Transformers	6.51E-02
			Transistors	1.14E-02
			Removed sub-components for DC PWB	Mass (kg)
	-		Aluminium heat sinks	2.83E-02
			Capacitors	4.98E-03
			Diodes	8.60E-04
iner.			Inductors	7.80E-02
			Resistors	1.16E-03
			Transistors	7.67E-03

Impact assessment

Impact category	Unit	AC PSU	DC PSU
Acidification	mol H+ _{eq}	1.20E-01	8.20E-02
Fossil resource use	MJ	2.65E+02	1.66E+02
Freshwater ecotoxicity	CTUe	1.40E+02	1.04E+02
Freshwater eutrophication	kg P _{eq}	1.79E-02	1.23E-02
Global energy requirement	MJ	3.03E+02	1.91E+02
Global warming potential	kg CO _{2eq}	1.66E+01	1.06E+01
Human toxicity, cancer	CTUh	2.44E-08	2.07E-08
Human toxicity, non-cancer	CTUh	5.69E-07	4.58E-07
lonising radiation	kBq U-235 _{eq}	7.01E+00	3.89E+00
Land use	Pt	7.33E+01	5.01E+01
Marine eutrophication	kg Neq	1.80E-02	1.21E-02
Minerals and metals resource use	kg Sbeq	4.63E-03	3.70E-03
Ozone depletion potential	kg CFC11 _{eq}	1.04E-06	6.80E-07
Particulate matter	disease inc.	8.56E-07	5.95E-07
Photochemical ozone formation	kg NMVOC _{eq}	8.51E-02	5.14E-02
Terrestrial eutrophication	mol N _{eq}	1.81E-01	1.25E-01
Water use	m ³ _{depriv.}	4.51E+03	2.69E+03



Reduction from 15% (HTc) to 45% (IR)

Impact assessment

AC-PSU

Contribution analysis

DC-PSU

Impact assessment

Contribution analysis **AC-PSU**

WU		00000	0000	00000000	*******	╶╁╂┼┼╌╤ ╢║║
TE	-		****			┍┺┲┺┫║║║║
POF			*******	****		; }}},* ////
PM				00000		
ODP				00000	Nee	
MRU					anna	
ME	-		*****			╶┰┸┯┸┨║║║┫
LU			******			┿╋┱╧┱┻╢║
IR				00000	00007#	
HTnc			2022/202	0000	····	
HTc			******	000		
GWP	-		*****		~~~	
GER			*****	-		
FE	20202020			000000	Nation	╺╧╍╧╍╧┙║║┫
FEtox	2022232		*****			
FRU			******		××ו•#	
Ac	9099999		~~~~		```₽ ₽∰	╃╋┯╼╢╢║
0	%	20%	40%	60%	80%	100%

WU			2222	000	N	******
TE				0000	an th	
POF					000033	
PM						<mark>╄┼╂╂╂╷┸┲┸┯┸╎║║║║</mark>
ODP						E
MRU						
ME	-			0000		
LU					anno	
IR						
HTnc			-1-1-1			⋈ <mark>⋳</mark>
HTc					00XV91	****
GWP			800 C	000		
GER			(R)(3)		01110	•••
FE		RARARARA	1		NX.	
FEtox					· · · · · · · · · · · · · · · · · · ·	<mark>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</mark>
FRU						
Ac	-		889	0000	,,,,,,,	
0)%	20%	40%	60)%	80%

╈╪ ┗┰┵┯┹║║║║║ ┺┰┶┯┺┲┶┯┙ └┴║║║║║ ╉┽┷┲┺┯╢║ ┍┻┯┫║║║║║ ╧╾╧╾┻

DC-PSU

- ┕┯┶┯┩║║║║

100%

- Capacitors
- Inductors
- PWB surface
- P Transistors
- **N** Mounting
- Aluminium
- #Diodes
- **∓** Integrated circuit
- III Transformers
- Resistors
- Transport
- Wastes

Capacitors incidence: AC: 16% - 64% DC: 25% - 67%

Inductors incidence: AC: 2% - 33% **DC:** < 1%

PWB surface incidence: AC: 2% - 23% DC: 2% - 31%

Other components incidence: no significant variations

Conclusions

- >Assessment of the energy and environmental impacts of a PSU to demonstrate that DC-DC loads can lead to a lower impact than their AC counterpart (from 15% for HTc to 45% for IR).
- **PWB** is the main contributor of the PSU. Reducing PWB's subcomponent improves energy and environmental performance of the entire device.

The contribution analysis on the two PWB indicated:

> Capacitors and inductors are the hot-spots for PWB in the base case;

>The removal of some inductors in the DC-PSU changed the contribution analysis and identified capacitors and PWB surface as the component with the highest burden.

Conclusions

Advancement with respect to the state-of-the art:

- \succ it focuses on a specific electric load, allowing to develop a detailed analysis of a PSU and its components;
- \succ it enriches the existing scientific literature with a new case study of LCAs applied to DC loads, for with there is a lack of primary data;
- > the modelling of the PSU is based on primary data, studied at lab-scale through a detailed weighting process for obtaining a reliable mass balance;
- \succ by identifying the environmental hot spots responsible of the higher impacts, it represents the starting point for defining eco-design strategies;

The results can be the basis for further studies that explore different DC loads.

The availability of **new DC loads datasets** will allow to perform complete evaluations of the environmental advantages of **DC microgrids** (including the devices that use the energy generated by the distributed energy systems).

Thank you for your attention!

Sonia Longo, University of Palermo Associate Professor, Ph.D.

Department of Engineering University of Palermo Viale delle Scienze, Bld.9, 90128 Palermo, Italy +39-091-23861927 sonia.longo@unipa.it

